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by H, and H, being singular® at the vane edges, making the
surface currents and hence the power loss at these locations
quite large. Of course, in the practical cavity the conductivity
is not perfect and the fields would not be singular. Also,
better convergence is obtained with thicker vanes, for which
the fields are better behaved. Results of this Q calculation
are presented in graphical form in Figs. 9 and 10. It is
estimated that the calculated Q results are better than
+10 percent accurate for t/a < 0.1 and better than + 5 per-
cent for t/a > 0.1. A useful check on the Q calculation is
possible when #/a = 1.0. In this case the cavity is no longer
open ended and is a simple closed rectangular cavity for
which the Q is easily calculated [6] and found to agree
with the results from this analysis. Note that the Q of the
rectangular open-ended cavity is lower than the Q of a
closed cavity of the same resonant frequency. The Q of the
two constructed cavities was measured and found to be
significantly lower (~60 percent) than the theoretical Q.
This difference, which is quite common, is accounted for by
the coupling hole size (0.2 in) and the surface finish, which
was not polished or even very smooth.

VI. CoNCLUSION

A field analysis of rectangular open-ended cavities has
been presented. The resonant frequency and Q have been
derived and presented in graphical form. Expressions for

! As a reviewer has pointed out, only H, is strictly singular while H,
has a step change equal to J; at the discontinuity.
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the fields inside the cavity were written and plotted in three
dimensions. Good accuracies were obtained in the resonant
frequency calculation; however, the Q calculation was not
as well behaved due to the power loss becoming large at the
vane edge. Comparisons of theoretical and experimental
results for two constructed cavities were given.

Topics for further work include improvement of the Q
calculation and quantifying the effect of a coupling hole
on the cavity frequency and Q. Variations in the cavity
design such as unsymmetrical terminations or more than
one vane in each termination region could also be in-
vestigated.
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Ferrite Planar Circuits in Microwave
Integrated Circuits
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Abstract—The ferrite planar circuit to be discussed in this paper is a
general planar circuit using ferrite substrates magnetized perpendicular
to the ground conductors. The main subject of this paper is the analysis
of an arbitrarily shaped triplate ferrite planar circuit, In particular, the
circuit parameters of the equivalent multiport are determined. To
analyze ferrite planar circuits in general, two approaches are possible.
One approach is based upon a contour-integral solution of the wave
equation. In the other approach the fields in the circuit are expanded in
terms of orthonormal eigenfunctions. Examples of the application of
such analyses are described.
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1. INTRODUCTION

HE planar circuit is defined as an electrical circuit
whose thickness in one direction is much less than one
wavelength and whose dimensions in the orthogonal direc-
tions are comparable to the wavelength. The concept of the
planar circuit was proposed by Okoshi in 1969 [1]. Since
then, its analysis [2]-[5] and synthesis [6], [7] have been
investigated for many circuits using isotropic material for
the spacer.
This paper will present the general treatment of a planar
circuit using ferrite material for the spacer. In particular,
an arbitrarily shaped ferrite planar circuit is discussed. The
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ferrite is magnetized in the direction perpendicular to the
ground plane.

Stripline circulators [8] often used in the microwave
integrated circuits and edge-guided mode devices [9], [10]
are considered ferrite planar circuits. They are, strictly
speaking, two-dimensional circuits because they require
essentially a disk resonator, wide striplines, and tapered
sections.

The main subject of this paper is the analysis of an arbi-
trarily shaped, triplate ferrite planar circuit. In particular,
the circuit parameters of the equivalent multiport are
determined. To analyze ferrite planar circuits in general,
two approaches are possible. One approach is based upon
a contour-integral solution of the wave equation. In-the
other approach the fields in the circuit are expanded in
terms of orthonormal eigenfunctions. Examples of such
analyses are also described.

II. Basic EQUATION

A ferrite planar circuit consists of an arbitrarily shaped
thin center conductor sandwiched by two ferrite substrates
with magnetic field perpendicular to the conducting plate.
It is assumed to be excited symmetrically with respect to
the upper and lower ground conductors. There are several
coupling ports as shown in Fig. 1 and the remainder of the
periphery is assumed to be open circuited. The xy coordi-
nates and z axis, respectively, are set parallel and perpen-
dicular to the conductors. The bias magnetization is in the
z direction. The thickness of the planar circuit is 2d.

When the spacing d is much smaller than the wavelength
and ferrite spacers are homogeneous and linear, only the
field components E,, H,, and H, with no variation along the
z axis are considered. It is deduced directly from Maxwell’s
equation that the following equation governs the electro-
magnetic fields in the ferrite planar circuit:

(V1" + Depg)V = 0 6]
where
62 52 #2 _ K2
V2 =+ — off = —————— »
T axz ayz nu ff P

Here V given by E, x d denotes the RF voltage of the
center conductor with respect to the ground conductors.
The effective permeability p.g is given by ¢ and x which are
the diagonal and off-diagnonal coefficients of permeability
tensor for magnetization in the z direction. The sign of p ¢
will depend upon the frequency and the internal magnetic
field.

At a coupling port, the following boundary condition
given by the differential equation must apply:

jf?l/ d
u ot on

where i, is the surface current density normal to the periph-
ery and dn and 8¢, respectively, are the derivative normal to
the periphery and the tangential derivative around the
periphery.

Almost at the periphery where the coupling ports are
absent, the current flow normal to the periphery is assumed

@

= '—jwﬂeff dln
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C (contour)

Fig. 1. Center conductor of a ferrite planar circuit and symbols used

in the integral equation.

to be zero, that is, i, = 0. Actually, however, the fringing
magnetic fields are always present. A simple correction for
this effect is to enlarge the periphery outwards by an
amount of 0.447d x K (K = 0.4) in advance of the analysis.
The coefficient K was determined by comparing the meas-
ured resonant frequencies for the various ferrite planar
resonators with the theoretical ones, which were calculated
by the Rayleigh-Ritz variational method assuming that the
circuits were lossless. This will be explained later in Section
Iv-C.

III. ANALYSIS BASED UPON A CONTOUR-INTEGRAL EQUATION
A. Integral Equation

If we introduce Green’s function G for (1), the RF voltage
V, at a point P in the circuit is given by a line integral

VP = § {_jwﬂeff dZnG +V (]EQE - a_G)} dt. (3)1
. u ot on

If we now use the free-space Green’s function for G in (3),
then we must select different types of Green’s functions
according to the sign of 1.

When p. > 0, G = H,®(kr)/4j should be used as
Green’s function, where H,® is the zeroth-order Hankel
function of second kind and k = v/ &ptqr- Then from (3),
the RF voltage at a point upon the periphery is found to
satisfy the following equation:

Vi = zi § {ja’ﬂeff dH, P (kr)(—i,)
J Ve

+ k (cos 0 —j -E sin 0) Hi(z’(kr)VL} dt. 4)
In this equation H,® is the first-order Hankel function of

second kind. The variable » denotes distance between points
M and L represented by s and s, respectively, and 8 denotes

oV
1 — ——
ve=$ (5

3V kav\ ko
4l %) -

oG

| 4 '5;1-} dr
oG

23t Va—n—} dt.

This relation and the relations (2) and § G@V/ot)ydt =
(4
—§ V(3G/or) dt give (3).
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Sampling points

C{contour)

Fig. 2. Symbols used in the computer analysis.

the angle made by the straight line from point M to point L
* and the normal at point L as shown in Fig. 1. If the current
density i, injected upon the periphery is known, (4) becomes
a Fredholm integral equation of the second kind in terms of
the RF voltage.

B. Computational Formulation

For a numerical calculation, we divide the periphery into
N incremental sections and set N sampling points defined
at the center of each section as shown in Fig, 2. When we
assume that the magnetic and electric field intensities are
uniform across each section, the above integral equation
results in a matrix equation:

N N
Z uijVj = Z hijIj5 i = 1,2,‘ . ’,N (5)
i=1 =1
where
k K . @
u; = 0; — — cos 0 — j=sin 0} H,'P(kr) dt;
2j Jw, U
Oftere d (2) . .
L L) H O kr) dy, i =
. 4VVJ. W,
hi; = ©)
Optege d 2 kW, .
—2— il —=(log— —1+79);, i=]
4 T 4

where y = 0.5772---: Euler’s constant and I; = —2i,W;
represents the total current flowing into the jth port. The
formulas u;; and 4;; in (6) have been derived assuming that
the jth section is straight. From the above relations, the
impedance matrix of the equivalent N-port is given by

Z=U"'H 0

where U~! denotes the inverse matrix to U. Then one
element of the impedance matrix is given by

i Uy, e hlii'j T
det U uy, o hyy o uyy

When the circuit has no coupling port, that is, /; = 0, from
the nontrivial condition of (5), we have

det U = 0. 9

This equation gives the resonant frequency of the circuit.
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Fig. 3. The variation of |det U| as a function of frequency of a
disk-shaped circuit at H, = 4000 Oe for N = 33.

When p; < 0, G = {Ky(hr) + jrnlo(hr)}/2n is appli-
cable, where h = wy/ elieesl and I, and K, are the zeroth-
order modified Bessel functions of the first and second kind,
respectively. In this case the elements of matrices U and H
in (7) are given by

uijzéij—kf (cos@—jfsinﬂ) (K, — jnl,)dt
T Jdw, i
Jored L g4 inloyat, -y

C. Examples of Analysis

In all of the following examples, the ferrimagnetic mate-
rial is assumed to be lossless with the saturation magnetiza-
tion 4n M, = 1300 G, the dielectric constant ¢ = 15.6, and
the thickness d = 2 mm.

As an example of the computer analysis described so far,
the resonant frequencies of a disk-shaped circuit were
computed first to check the computation accuracy. Since
det U = 0in (9) is never realized for real frequency due to
the computation error, we define the frequency which gives
the minimum of |det U] as the eigenvalue. The variation of
|det U] is shown as a function of frequency F (gigahertz) in
Fig. 3 for N = 33 at H, = 3300 Oe, which shows the first
(F = 4.35), the second (F = 5.31), the third (F = 6.05),
the fourth (F = 6.85), and the fifth (F = 7.26) minima. By
comparing these calculated eigenvalues with the theoretical
ones, which should be given by the roots of

Kk nd,(ka) _

J, (ka) — 0, n=0,4+1, +2---
~u ka
,"f<ha)_EM=o, n=12--
i i ha

we found that the computation error was within 2.0 percent
for the sampling number 33.

Next, the characteristics of the Y-junction stripline
circulator were computed as shown in Fig. 4. Here the
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Fig. 4. Computed performance of a stripline Y-junction circulator
coupled by the striplines of 50 Q.
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Fig.5. Computed RF voltage distribution, amplitude (solid curve) and
phase (broken curve), along the perlphery of a Y-junction stripline
circulator at the center frequency for N = 33.

internal magnetic field is 3700 Oe, N = 33, and 50-Q strip-
lines are coupled to the circulator. The circulator perform-
ance in Fig. 4 is obtained above the ferrimagnetic resonance
point of circulation, which is about 5.7 GHz in this case. On
the other hand, the resonant frequencies of +1 and —1
modes, respectively, are 5.5 and 4.9 GHz, which means that
the center frequency is not midway between +1 and —1
mode resonant frequencies but exterior to the region. This
is believed to be due to operating at a frequency far from the
degeneracy of the +1 modes, i.e., at a greater separation of
the modes, and the strong influence of higher order modes.
Fig. 5 shows the RF voltage distribution along the periphery
of a Y-junction stripline circulator at the center frequency
for N =-33. The solid and broken curves show the relative
amplitude and phase of the RF voltage along the periphery,
respectively. The distribution of the amplitude is not sinu-
soidal, as might be expected, but exhibits a shallower
minimum between the input and output ports and a dis-
tortion in the vicinity of ports. This is due to the influence
of higher order modes as mentioned previously, which
results from the strong coupling to the stripline ports.
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IV. AnNavLysis BASED UroN AN EIGENFUNCTION
ExpANsioN

A. Formulation of Circuit Parameters

Now we introduce the Green’s function which satisfies
the following boundary condition along the contour C in

)

kK9G _0G _ 11
u ot on
The RF voltage at a point in the circuit is givén by
V = joma d § G(=i) . (12)

Furthermore, we expand the Green’s function in terms of
the complex eigenfunctions ¢, which derive from the eigen-
value problem defined by

(VT2 + wazsﬂeff)¢a = 0’ (lIl D)
K0 _ %% _ o (on0) (13)
u ot on ,

f f sbs™ dS = b

where the asterisk means a complex conjugate of ¢,. Then
we can represent the RF voltage in the circuit, using eigen-

functions, by
d’ad)a
= jo d
jo fﬁ Z e

Next, to calculate the circuit parameters of the equivalent
multiport, we define approximately the RF voltage on a
port and the total current flowing into a port, respectively,
as

(—1i,) dt. (14)

i

V,=— Vi) dy, I; = f {—2i,(tp} dt;. (15)

Wi f]
Substituting (15) into (14), we have
L3
¢a gti)(pa(tzi) dti dtj) Ij (16)

0, —

V, = l ( y Jod
/=1 \a=0 2W,;W; Jy,
where / is the number of ports coupling to the planar circuit.

Thus one element of the impedance matrix of the equivalent
multiport becomes

© H . *
Zij — _](O d J‘ ¢a (ti)¢a(tf) dtl dtj. (17)
a=0 ZVVlVVJ 602

Wi

It is clear from the above equation that the impedance
matrix is not symmetric, i.e., Z;; X Z;;, because ¢, are
generally complex elgenfunctlons but Z;; = —Z;*, which
corresponds to the lossless condition of the circuit. To
obtain the performance of a ferrite planar circuit by means
of (17), we must solve the eigenvalué problem defined by
(13) repeatedly at different frequencies for a given circuit
and a given bias magnetic field. This is due to the fact that
Ueee contained in the problem is a function of the operation
frequency even if the bias magnetic field is given.
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B, Computational Formulation

To $olve the eigenvalue problem in (13), in general, the
Rayleigh-Ritz variational method, using a polynomial
approxiration, will be employed.

Since (13) is found to be the Euler equation of the func-
tional 1,

I = ffp { VT¢[2 - w2aym|¢|2) ds + JE §C ¢* %.dt) i
(18)

Instead of solving (13), we attempt to find the approximate
somplex functions which minimize the functional 1.
Let the function ¢ be replaced by

M

¢=Zcifi

i=1

(19)

‘here the c; denote the complex expansion coefficients to be
etermined and the f; are the real basis functions. The
ationary points of I can be selected by evaluating the M
Juations 0If/0c;* = 0. This immediately gives the matrix
genvalue problem

(4 — w?euyB)c =0 (20)

here

A,.j=” Vf;.~ijds+j53§ﬁ%dz,
D wd, ot

B = prfif)‘ ds.

[ere, the values of y, k, and pi. are constant if both the bias
ragnetic field and the frequency are given. Thus the eigen-
alue problem given in (i3) has been approximated by the
Igebraic eigenvalue problem contained in (20). In (20),
1oting that the 4 matrix is Hermitian and that the B matrix
s symmetric and positive definite, the eigenvalue w,? is
‘ound to be real. The problem given in (20) will be solved
zasily by a library program when (20) is rewritten in the
usual form of the eigenvalue problem of a Hermitian matrix.
To normalize the approximating eigenfunctions having
arbitrary amplitude, the coefficients calculated should be
multiplied by

M M ) —-1/2
(s Y ¥y ci*chij)
i=1 j=1

Whén the ferrite planar circuit has 10 coupling ports, i.e.,

in the case of a resonator, froni the nontrivial condition of
(20), we also have

det (4 — @ B) = 0. 21)

However, in this case the angular frequency @ contained

implicitly in pu, x, and g, is unknown. The resonant fre-
quencies of the circuit are given by the roots of (21).
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Fig. 6. Magnetic tuning characteristics of a square resonator. The
broken curves were calculated taking fringing fields into account.

C. Results

In all of the following examples, a polynomial of order 5
will be used to dpproximate the eigenfunctions, which gives
a matrix size of order 21.

First, the characteristics of ferrite planar resonators, of
which nothing has been reported so far except a disk-shaped
circuit [11], were studied. Fig. 6 shows the magnetic tuning
characteristics of a square resonator with a side 6.4 mm
long. The broken curves were calculated taking the effects
of fringing fields into account as mentioned in Section II,
assuming that the circuits are lossless. The measured res-
onant frequencies shown in solid curves are found to be in
good agteement with the calculated values, especially above
the ferrimagnetic resonance. This is probably because the
influence of the magnetic loss is smaller in this region. In the
experiment, the square ferrimagnetic substrates (25 x 25
mm?) with a saturation magnetization of 4nMs = 1300 G,
linewidth AH = 68 QOe, a dielectric constant of ¢ = 15.6,
and thickness d = 2 mm were used for the spacing material.

Fig. 7 shows the computed instantaneous distribution of
the RF voltage in the square resonator for the fundamental
mode. Equiamplitude (upper) and phase (lower) lines are
shown for (a) u. > 0 at Hy = 1300 Oe, and (b) pe < 0
at H, = 2300 Oe. The fields are found to rotate clockwise
as In a disk resonator. It is also found that the fields are
sommewhat cohcentrated along the periphery when p,. < 0.

In the case of a triangular resonator with a side 10 mm
long, the magnetic tuning characteristics and the instan-
taheous RF voltage distribution for the fundamental mode
are shown in Figs. 8 and 9, respectively. It is found from the
figures that almost the same resonant characteristics as
obtained for 4 square resonator result. It generally follows
that when ji; > 0, the modes rotating both clockwise and
counterclockwise are the ones resonating in ferrite planar
resonators. On the other hand, when u. < 0, only the
mode rotating clockwise can exist, and, furthermore, the
fields in resonators are concentrated along the periphery.
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Fig. 8. Magnetic tuning characteristics of a triangular resonator.

Finally, several interesting applications of the analysis to
a triangular ferrite planar circuit will be shown. Fig. 10
shows a center conductor plate of a three-port triangular
circuit used in the calculation. The shaded portion (hexagon)
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()

Fig. 7. Compuited instantaneous distribution of the RF voltage in a square resonator for the fundamental mode.
Equiamplitude (upper) and equiphase (lower) lines are shown when (a) z.¢r > 0 at Ho = 1300 Oc and (b) pesr < 0
at Hy = 2300 Oe.

in this figure is regarded as a planar circuit coupled by three
striplines. We calculated the characteristics of the circuit
for various applied magnetic fields and characteristic im-
pedances Z, of the striplines. When the applied magnetic
field is 5300 Oe, a circulator performance as shown in Fig.
11 was obtained above the ferrimagnetic resonance when
Z, = 30 Q. The light line curves are calculated by the
method based ppon the eigenfunction expansion for i =
a = 21. The heavy line curves by the contour-integral
method for N = 33 are also shown for the comparison.
This performance can be explained by considering two
fundamental rotating modes, i.e., a mode rotating clock-
wise and the other rotating counterclockwise. Consequently,
the principle of operation is the same as for a disk-shaped
stripline circulator.

When the applied magnetic field at the triangular ferrite

‘planar circuit is 3300 Oe, p. is negative in the frequency

range between 7.19 and 9.24 GHz. In this range the per-
formance of the so-called edge-guided mode circulator was
calculated as shown in Fig. 12 for Z, = 50 Q. We note that
such a performance has not yet been. obtained experimen-
tally. :
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Fig. 9. Computed instantaneous distribution of the RF voltage in a triangular circuit for the fundamental mode when

(b)

(@) o > 0at Hy = 1300 Oe and (b) sterr < 0 at Ho = 2300 Oe.
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2
w
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372 FL

Fig. 10. Center conductor of a triangular ferrite planar circuit used
in the calculation.

V. CONCLUSION

We have shown that an arbitrarily shaped ferrite planar
circuit can be analyzed using the contour-integral method
or the eigenfunction expansion method. i :

Although there is no difference in the labor required t
analyze repeatedly at different fréquencies using these two
approaches, the former is more readily adapted to a circuit
‘with a complicated pattern than the latter. o

We hope that these approaches will be useful in the design
and analysis of microwave integrated circuits on ferrite
substrates. '

o
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Fig. 11. Computed circulator performance of a triangular circuit at
Hy = 5300 Oe for Z, = 30 Q. The light line curves are by the
method based upon eigenfunction expansion for i = g = 21. The
heavy line ones are by the integral equation method for N = 33.
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Fig. 12. Computed circulator performance of a triangular circuit at
Hy = 3300 Oe for Z, = 50 Q.
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Fnergy Analysis for the Amplification Phenomena
of Magnetostatic Surface Waves in a YIG-
Semiconductor Coupled System

SYOIJI YAMADA, NION S. CHANG, MEMBER, IEEE, AND YUKITO MATSUO

Abstract—Amplification phenomena of magnetostatic surface waves
(MSSW?) in a ferrite-semiconductor system are analyzed in detail for
the first time from an energy view point. For the interactions between
MSSW’s containing a backward branch and carrier streams in a semi-
conductor, the dispersion relations are given and the energy conservation
law is applied to the system. The results in terms of energy quantities
are found to be consistent with the solutions of the dispersion equation
and well explain the amplifying mechanism macroscopically, We con-
clude that this kind of interaction is a negative energy dissipation type of
instability. .

I. INTRODUCTION

N SEVERAL YEARS, the investigation of interaction
between magnetostatic surface waves (MSSW’s) and a
carrier stream in semiconductor has been advanced rapidly
by many authors [1]-[5]. Recently, we have proposed a

Manuscript received June 7, 1976; revised October 1, 1976.
The authors are with the Institute of Scientific and Industrial
Research, Osaka University, Osaka, Japan.

general layered structure model consisting of a YIG slab,
a semiconductor, dielectrics, and metal plates, and derived a

‘general dispersion equation of the waves. As a result of the

analysis, it was concluded that the MSSW’s are amplified
when the carrier drift velocity v, is greater than the phase
velocity v, of MSSW’s [6], [7].

In this paper, the interaction between the MSSW mode
having a backward branch [8], [9] and a stréam of drifting
carriers in semiconductor is discussed, including the in-
fluence of YIG damping. The ordinary dispersion equation
is derived and solved numerically, and then the conservation
law of energy appropriate for a dispersive medium is applied
to the model of the system. The purpose of our analysis is
to show the significance of the De Wames-Wolfram (WW)
mode [8] in a practical amplifier design and to interpret the
amplifying mechanism, which seems so far not sufficiently
clear, in terms of the energy exchange between the waves
and the media.



