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by H. and Hz being singulari at the vane edges, lmaking the

surface currents and hence the power loss at these locations

quite large. Of course, in the practical cavity the conductivity

is not perfect and the fields would not be singular. Also,

better convergence is obtained with thicker vanes, for which

the fields are better behaved. Results of this Q calculation

are presented in graphical form in Figs. 9 and 10. It is

estimated that the calculated Q results are better than

~ 10 percent accurate for t/a < 0.1 and better than ~ 5 per-

cent for t/a > 0.1. A useful check on the Q calculation is

possible when t/a = 1.0. In this case the cavity is no longer

open ended and is a simple closed rectangular cavity for

which the Q is easily calculated [6] and found to agree

with the results from this analysis. Note that the Q of the

rectangular open-ended cavity is lower than the Q of a

closed cavity of the same resonant frequency. The Q of the

two constructed cavities was measured and found to be

significantly lower (*60 percent) than the theoretical Q.

This difference, which is quite common, is accounted for by

the coupling hole size (0.2 in) and the surface finish, which

was not polished or even very smooth.

VI, CONCLUSION

A field analysis of rectangular open-ended cavities has

been presented. The resonant frequency and Q have been

derived and presented in graphical form. Expressions for

1As a reviewer has pointed out, only H= is strictly singular while H.
has a step change equal to J, at the discontinuity.

the fields inside the cavity were written and plotted in three

dimensions. Good accuracies were obtained in the resonant

frequency calculation; however, the Q calculation was not

as well behaved due to the power loss becoming large at the

vane edge. Comparisons of theoretical and experimental

results for two constructed cavities were given.

Topics for further work include improvement of the Q

calculation and quantifying the effect of a coupling hole

on the cavity frequency and Q. Variations in the cavity

design such as unsymmetrical terminations or more than

one vane in each termination region could also be in-

vestigated.
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Abstract—The ferrite planar circuit to be discussed in this paper is a
general planar circuit using ferrite substrates magnetized perpendicular

to the ground conductors. The main snbject of this paper is the analysis
of an arbitrarily shaped triplate ferrite planar circuit. In particular, the
circuit parameters of the equivalent multiport are determined. To

analyze ferrite planar circuits in general, two approaches are possible.
One approach is based upon a contonr-integral solution of the wave
equation. In the other approach the fields in the circuit are expanded in

terms of orthonormal eigenfunctions. Examples of the application of
such analyses are described.
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I. INTRODUCTION

T HE planar circuit is defined as an electrical circuit

whose thickness in one direction is much less than one

wavelength and whose dimensions in the orthogonal direc-

tions are comparable to the wavelength. The concept of the

planar circuit was proposed by Okoshi in 1969 [1]. Since
then, its analysis [2]–[5] and synthesis [6], [7] have been

investigated for many circuits using isotropic material for

the spacer.

This paper will present the general treatment of a planar

circuit using ferrite material for the spacer. In particular,

an arbitrarily shaped ferrite planar circuit is discussed. The
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ferrite is magnetized in the direction perpendicular to the

ground plane.

Stripline circulators [8] often used in the microwave

integrated circuits and edge-guided mode devices [9], [10]

are considered ferrite planar circuits. They are, strictly

speaking, two-dimensional circuits because they require

essentially a disk resonator, wide striplines, and tapered

sections.

The main subject of this paper is the analysis of an arbi-

trarily shaped, triplate ferrite planar circuit. In particular,

the circuit parameters of the equivalent multiport are

determined. To analyze ferrite planar circuits in general,

two approaches are possible. One approach is based upon

a contour-integral solution of the wave equation. In- the

other approach the fields in the circuit are expanded in

terms of orthonormal eigenfunctions. Examples of such

analyses are also described.

II. BASIC EQUATION

A ferrite planar circuit consists of an arbitrarily shaped

thin center conductor sandwiched by two ferrite substrates

with magnetic field perpendicular to the conducting plate.

It is assumed to be excited symmetrically with respect to

the upper and lower ground conductors. There are several

coupling ports as shown in Fig. 1 and the remainder of the

periphery is assumed to be open circuited. The xy coordi-

nates’ and z axis, respectively, are set parallel and perpen-

dicular to the conductors. The bias magnetization is in the

z direction. The thickness of the planar circuit is 2d.

When the spacing d is much smaller than the wavelength

and ferrite spacers are homogeneous and linear, only the

field components E=, H., and H, with no variation along the

z axis are considered. It is deduced directly from Maxwell’s

equation that the following equation governs the electro-

magnetic fields in the ferrite planar circuit:

(V,2 + f02&Pe,,)V = O (1)

where

V,2=2+$ ~e,, =p2-K2.
ax’ P

Here V given by E= x d denotes the RF voltage of the

center conductor with respect to the ground conductors.

The effective permeability ,u.~~is given by p and ~ which are

the diagonal and off-diagnonal coefficients of permeability

tensor for magnetization in the z direction. The sign of p.~~

will depend upon the frequency and the internal magnetic
field.

At a coupling port, the following boundary condition

given by the differential equation must apply:

(2)

where i. is the surface current density normal to the periph-

ery and dn and at,respectively, are the derivative normal to

the periphery and the tangential derivative around the

periphery.

Almost at the periphery where the coupling ports are

absent, the current flow normal to the periphery is assumed

Fig. 1. Center conductor of a ferrite planar circuit and symbols used
in the integfal equation.

to be zero, that is, i. = O. Actually, however, the fringing

magnetic fields are always present. A simple correction for

this effect is to enlarge the periphery outwards by an

amount of 0.447d x K (K = 0.4) in advance of the analysis.

The coefficient K was determined by comparing the meas-

ured resonant frequencies for the various ferrite planar

resonators with the theoretical ones, which were calculated

by the Rayleigh-Ritz variational method assuming that the

circuits were lossless. This will be explained later in Section

IV-C.

HI. ANALYSIS BASED UPON A CONTOUR-INTEGRAL EQUATION

A. Integral Equation

If we introduce Green’s function G for (l), the RF voltage

Vp at a point Pin the circuit is given by a line integral

If we now use the free-space Green’s function for Gin (3),

then we must select different types of Green’s functions

according to the sign of p.~f.

When p.ff >0, G = HO(2)(kr)/4j should be used as

Green’s function, where HO(2) is the zeroth-order Hankel

function of second kind and k = ro~.w,ff. Then from (3),

the RF voltage at a point upon the periphery is found to

satisfy the following equation:

VMJ ${2j . .kwff dH$2)(kr)(– i.)

(+k cos O–j~sin O
) )H1(2J(kr)V~ dt. (4)

In this equation HI (2) is the first-order Hankel function of

second kind. The variable r denotes distance between points

M and L represented bys and SO,respectively, and Odenotes

This relation and the relations (2) and
f

G(~V/i%) dt =

J

c
— V(i?G/i%) dt give (3).

c
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Fig. 2. Symbols used in the computer analysis.
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the angle made by the straight line from point M to point L Fig. 3. The variation of Idet u 1 as a function of frequency of a

and the normal at point L as shown in Fig. 1. If the current disk-shaped circuit at HO = 4000 Oe for N = 33,

density i. injected upon the periphery is known, (4) becomes

a Fredholm integral equation of the second kind in terms of

the RF voltage.

B. Computational Formulation

For a numerical calculation, we divide the periphery into

N incremental sections and set N sampling points defined

at the center of each section as shown in Fig, 2, When we

assume that the magnetic and electric field intensities are

uniform across each section, the above integral equation

results in a matrix equation:

~ ~ijVj = ~1 hijIj, i = 1,2,. ..,N (5)
j=l

where

u,, = aij — I H 1cos 0 – j ~ sin 0 Hl(2)(kr) dtj
2j ~ u

I
weff d

J

IZO(2)(kr) dtj, i=j

4wj ~j
hij =

{( ))

(6)
CO/leff Ll J logfli-l+~ ~

i,=j

4 n 4

where y = 0.5772. “ “: Euler’s constant and lj = – 2i~Wj

represents the total current flowing into the jth port. The

formulas Uij and hi, in (6) have been derived assuming that

the jth section is straight. From the above relations, the

impedance matrix of the equivalent N-port is given by

z = U-lH (7)

where U – 1 denotes the inverse matrix to U. Then one

element of the impedance matrix is given by

When the circuit has no coupling port, that is, lj = O, from

the nontrivial condition of(5), we have

det U = O. (9]

This equation gives the resonant frequency of the circuit.

When ~.ff <0, G = {KO(hr) + jzZO(hr)}/2z is appli-

cable, where h = co~sjp~ffl and 10 and KO are the zeroth-

order modified Bessel functions of the first and second kind,

respectively. In this case the elements of matrices U and H

in (7) are given by

Uij = ijij — !!H )cos 6 – j ~ sin 9 (ICl – jnll) dt
rc~

J /-3

1
@~effd 1— . J2X w, ~j

(KO + jnIO) dt, i+j

hij = (lo)
j~~.ff d.—

((
log!$+ y-l

27C ))
–jz , i=j.

C. Examples of Analysis

In all of the following examples, the ferromagnetic mate-

rial is assumed to be lossless with the saturation magnetiza-

tion 47cM~ = 1300 G, the dielectric constant e = 15.6, and

the thickness d = 2 mm.

As an example of the computer analysis described so far,

the resonant frequencies of a disk-shaped circuit were

computed first to check the computation accuracy. Since

det U = O in (9) is never realized for real frequency due to

the computation error, we define the frequency which gives

the minimum of Idet UI as the eigenvalue. The variation of

Idet UI is shown as a function of frequency F (gigahertz) in

Fig. 3 for N = 33 at HO = 3300 Oe, which shows the first

(F= 4.35), the second (F= 5.31), the third (F= 6.05),

the fourth (F = 6.85), and the fifth (F = 7.26) minima. By

comparing these calculated eigenvalues with the theoretical

ones, which should be given by the roots of

Jn’(kz) – ! ‘Jn(ka)_ o,

p ka
n=O, *l, +2””’

~ ,(ha) _ ~ nZti(ha)
n —=0, n=l,z.-.

P ha

we found that the computation error was within 2.0 percent

for the sampling number 33.

Next, the characteristics of the Y-junction stripline

circulator were computed as shown in Fig. 4. Here the
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Fig.5. Computed RFvoltage distribution, mpIitude (solid curve) and
phase (broken curve), along the periphery of a Y-junction stripline
circulator at thecenter frequency for N = 33.

internal magnetic field is37000e, N = 33, and 50-f2 strip-

lines are coupled to the circulator. The circulator perform-

ance in Fig. 4 is obtained above the ferromagnetic resonance

point of circulation, which is about 5.7 GHz in this case. On

the other hand, the resonant frequencies of + 1 and – 1

modes, respectively, are 5.5 and 4.9 GHz, which means that

the center frequency is not midway between + 1 and – 1

mode resonant frequencies but exterior to the region. This

is believed to be due to operating at a frequency far from the

degeneracy of the + 1 modes, i.e., at a greater separation of

the modes, and the strong influence of higher order modes.

Fig. 5 shows the RF voltage distribution along the periphery

of a Y-junction stripline circulator at the center frequency

for N =- 33. The solid and broken curves show the relative

amplitude and phase of the RF voltage along the periphery,

respectively. The distribution of the amplitude is not sinu-

soidal, as might be expected, but exhibits a shallower

minimum between the input and output ports and a dis-

tortion in the vicinity of ports. This is due to the influence

of higher order modes as mentioned previously, which

results from the strong coupling to the stripline ports.
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IV. ANALYSIS BASED UPON AN EIGENFUNCTION

EXPANSION

A. Formulation of Circuit Parameters

Now we introduce the Green’s function which satisfies

the following boundary condition along the contour C in

(3):

.?caG
3-—–:=0. (11)

~ at

The RF voltage at a point in the circuit is given by

V = jcop.~~ d
$

G( – in) dt. (12)
c

Furthermore, we expand the Green’s function in terms of

the complex eigenfunctions 0=, which derive from the eigen-

value problem defined by

(VT2+ %2W.ff)f).= 0, (in D)

where the asterisk means a complex conjugate of ~~. Then

we can represent the RF voltage in the circuit, using eigen-

functions, by

Next, to calculate the circuit parameters of the equivalent

multiport, we define approximately the RF voltage on a

port and the total current flowing into a port, respectively, ‘

as

v=;J V(ti) dti Ij =

J

{ -2iu(tj)) dtj. (15)
Wi WJ

Substituting (15) into (14), we have

where 1is the number of ports coupling to the planar circuit,

Thus one element of the impedance matrix of the equivalent

multiport becomes

zij=f J- H h*(o#L(t,) ~t, ~t
L j. (17)

a=o 2wiwj w, WJ foaz — co2

It is clear from the above equation that the impedance

matrix is not symmetric, i.e., Zij + Zji, because ~. are
generally complex eigenfunctions, but Zij = – Zji*, which

corresponds to the lossless condition of the circuit. To

obtain the performance of a ferrite planar circuit by means

of (17), we must solve the eigenvalue problem defined by

(13) repeatedly at different frequencies for a given circuit

and a given bias magnetic field. This is due to the fact that

p.ff contained in the problem is a function of the operation
frequency even if the bias magnetic field is given.
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B. Computationa~ Formulation

TCJ iolve the eigenvalue problem in (13), in general, the

Rayleigh-Ritz variational method, using a polynomial

approxifiation, will be employed.

Since (13) is found to be the Euler equation of the func-

tional 1,

tnstead of solving (13), we attempt to find the approximate

:omplex functions which minimize the functional L

Let the function @ be replaced by

i=l
(19)

‘here the ci denote the complex expansion coefficients to be

etermined and the ~i are the real basis functions. The

ationary points of 1 can be selected by evaluating the M

~uations 81/dci* = O. This immediately gives the matrix

genvalue problem

(A – co’&#LteffB)c = o (20)

here

[ere, the values of p, rc, and ~.~~are constant if both the bias

]agnetic field and the frequency are given. TIIus the eigen-

alue problem given in (13) has been approximated by the

lgebraic eigenvalue problem contained in (20). In (20),

loting that the A matrix is Hermitian and that the B matrix

s symmetric and positive definite, the eigenvalue co=’ is

‘ound to be real. The problem given in (20) will be solved

aasily by a library program when (20) is rewritten in the

usual form of the eigenvalue problem of a Hermitian matrix.

To normalize the approximating eigenfunctions having

arbitrary amplitude, the coefficients calculated should be

multiplied by

Whc% the ferrite planar circuit has no coupling ports, i.e.,

in the case of a resonator, froni the nontrivial condition of

(20), we also have

det (A – co2@.~~B) = O. (2i)

However, in this case the angular frequency co contained

implicitly in p, ~, and pe~~is unknown. The resonant fre-

quencies of the circuit are given by the roots of (21).

.
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Fig. 6. Magnetic tuning characteristics of a square resonator. The
broken curves were calculated taking fringing fields into account.

C. Results

In all of the following examples, a polynomial of order 5

will be used to approximate the eigenfunctions, which gives

a matrix size of order 21.

First, the characteristics of ferrite planar resonators, of

which notliing has been reported so far except a disk-shaped

circuit [11], were studied, Fig. 6 shows the magnetic tuning

characteristics of a square resonator with a side 6.4 mm

long. The broken curves were calculated taking the effects

of fringirig fields into account as mentioned in Section II,

assuming that the circuits are lossless, The measured res-

onant frequencies shown in solid curves are found to be in

good agtee!nent with the calculated values, especially above

the ferromagnetic resonance. This is probably because the

influence df the magnetic loss is smaller in this region. In the

experi~ent, the square ferromagnetic substrates (25 x 25

mmz) with a saturation magnetization of 4rcMs = 1300 G,

linewidth AH = 68 Oe, a dielectric constant of e = 15.6,

and thickness d = 2 mm were used for the spacing material.

Fig. 7 shows the computed instantaneous distribution of

the RF voltage in the square resonator for the fundamental

mode. Equiamplitude (upper) and phase (lower) lines are

shown for (a) ~,~[ > 0 at HO = 1300 Oe, and (b) p.~~ < 0

at HO = 2300 Oe. The fields are found to rotate clockwise

as in a disk resonator. It is also found that the fields are

somewhat concentrated along the pbriphery when p.~~”< O.

In tfie case of a triangular resonator with a side 10 mm

long, the magnetic tuning characteristics and the instan-

taneous RF voltage distribution for the fundamental mode

are shown in Figs. 8 and 9, respectively. It is found from the

figures that almost the same resonant characteristics as

obtained for a square resonator result. It generally follows

that when ~e~~> 0, the modes rotating bbth clockwise and

counterclockwise are the ones resonating in ferrite planar

resonators. On the other hand, when p.~~ < 0, only the

mode rotating clockwise can exist, and, furthermore, the
fields in resonators are concentrated along the periphery.
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(a) (b)

Fig. 7. Computed instantaneous distribution of the RF voltage in a square resonator for the fundamental mode.
13quiamplitude (upper) and equiphase (lower) lines are shown when (a) p. ~~ > 0 at Ho = 1300 Oe and (b) p.,, < 0
at Ho = 2300 Oe.
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Fig. 8. Magnetic tuning characteristics of a triangular resonator.

Finally, several interesting applications of the analysis to

a triangular ferrite planar circuit will be shown. Fig. 10

shows a center conductor plate of a three-port triangular

circuit used in the calculation. The shaded portion (hexagon)

20 = 300. The light line curves ire calculated by the

method based ppon the eigenfunction expansion for i =

a = 21. The heavy line curves by the contour-integral

method for N = 33 are also shown for the comparison.

This performance can be explained by considering two

fundamental rotating modes,’ i.e., a mode rotating clock-

wise and the other rotating counterclockwise. Consequently,

the principle of operation is the same as for a disk-shaped

stripline circulator.

When the applied magnetic field at the triangular ferrite

planar circuit is 3300 Oe, ~e~~is negative in the frequency

range between 7.19 and 9.24 GHz. In this range the per-

formance of the so-called edge-guided mode circulator was

calculated as shown in Fig. 12 for 20 = 50 Q. We note that

such a performance has not yet been obtained experimen-

tally.
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(a) (b)

Fig. 9. Computed instantaneous distribution of the RF voltage in a triangular circuit for the fundamental mode when
(a) ~.,, > Oat HO = 1300 Oe and (b) ~er, < Oat Ho = 2300 Oe.
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, ,0 ~ ,{)i w

w
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Fig. 10. Center conductor of a triangular ferrite planar circuit used
in the calculation.

V. CONCLUSION

We have shown that an arbitrarily shaped ferrite planar

circuit can be analyzed using the contour-integral method

or the eigenfunction expansion method.

Although there is no difference in the labor required to

analyze repeatedly at different frequencies using these two
approaches, the former is more readily adapted to a circuit

“with a complicated pattern than the latter.

We hope that these approaches will be useful in the design

and analysis of microwave integrated circuits on ferrite

substrates.

F(GHz)

Fig. 11. Computed circulator performance of a triangular circuit at
HO = 5300 Oe for ZO = 30 CL The light line curves are by the
method based upon eigenfunction expansion for i = a = 21. The
heavy line ones are by the integral equation method for N = 33.
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Energy Analysis for the Amplification Phenomena
of Magnetostatic Surface Waves in a YIG-

Semiconductor Coupled System
SYOJI YAMADA, NION S. CHANG,

Abstract—Amplification phenomena

[MSSW’S) in a ferrite-semiconductor
of magnetostatic surface waves

system are analyzed in detail for
the first time from an energy view point. For the interactions between
MSSW’S containing a backward branch and carrier streams in a semi-

conductor, the dispersion relations are given and the energy conservation
law is applied to the system. The results iu terms of energy quantities

are found to be consistent with the solutions of the dispersion equation

and well explain the amplifying mechanism microscopically. We con-

clude that thk kind of interaction is a negative energy dissipation type of
instability. ,

I. INTRODUCTION

I N SEVERAL YEARS, the investigation of interaction

between magnetostatic surface waves (MSSWS) and a

carrier stream in semiconductor has been advanced rapidly

by many authors [1]-[5]. Recently, we have proposed a
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general layered structure model consisting o? a YIG slab,

a semiconductor, dielectrics, and metal plates, and’ derived a

‘general dispersion equation of the waves. AS a result of the

analysis, it was concluded that the MSSW’S are amplified

when the carrier drift velocity V. is greater than the phase

velocity up of MSSWS [6], [7],

In this paper, the interaction between the MSSTV mode

having a backward branch [8], [9] and a stream of drifting

carriers in semiconductor is discussed, including the in-

fluence of YIG damping. The ordinary dispersion equation

is derived and solved numerically, and then the conservation

law of energy appropriate for a dispersive medium is applied

to the model of the system. The purpose of our analysis is

to show the significance of the De Wames–Wolfram (WW)

mode [8] in a practical amplifier design and to interpret the

amplifying mechanism, which seems so far not sufficiently

clear, in terms of the energy exchange between the waves

and the media.


